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The Moderate Resolution Imaging Spectroradiometer (MODIS) is used widely for mapping snow cover in
climate and hydrologic systems, but its accuracy is reduced in forests due to canopy obstruction. Prior validation
datasets cannot quantify MODIS errors in forests, because finer-resolution passive sensors (e.g., Landsat) en-
counter the same canopy errors, and operational ground-based networks sample snow in clearings where
snow dynamics differ from those in the forest. To assess MODIS accuracy relative to forest cover, we applied
a common canopy adjustment to daily 500 m fractional snow-covered area (fSCA) from the physically-based
MODIS Snow-Covered Area and Grain size (MODSCAG) algorithm, and tested it at subalpine meadow and forest
sites (0.25 km2–1 km2) in the Sierra Nevada, California during two snow seasons. 37 to 89 sensors monitored
hourly ground temperature at these sites. Damped diurnal variations provided a signal for snow presence due to
the insulating properties of snow, yielding daily ground-based fSCA at each site. Ground-based fSCA values were
validated in a canopy-free area of a meadow site using time-lapse imagery and 15 m snow maps from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Ground-based fSCA had high cor-
relation (R2=0.98) with time-lapse data and was within 0.05 of ASTER fSCA. Comparisons between MODSCAG
and ground-based fSCA revealed that an underestimation bias remained in the canopy-adjusted MODSCAG fSCA,
ranging from −0.09 to −0.22 at the meadow sites and from −0.09 to −0.37 at the forest sites. Improved
canopy adjustment methods are needed for MODIS fSCA.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Seasonal snow cover is a critical component of the energy and
water budgets of mountainous watersheds. The high albedo and low
thermal conductivity of snow reduce energy absorbed by the land
surface, while snowpack stores water during the winter and releases
it in the spring as snowmelt. Spatial mapping of snow cover with the
NASA Moderate Resolution Imaging Spectroradiometer (MODIS)
(Hall et al., 2002) is convenient because of its frequent (daily) obser-
vations of snow at moderate spatial resolution (500 m). MODIS has
been used to evaluate the spatial distribution of snow cover in models
(Shamir & Georgakakos, 2006), to improve streamflow forecasting for
reservoir operations (McGuire et al., 2006), to monitor climate
change in areas with few snow observations (Bormann et al., 2012),
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and to reconstruct spatial distributions of snow water equivalent
(SWE) (Homan et al., 2010; Rice et al., 2011; Rittger et al., 2011).

However, numerous factors limit the availability and accuracy of
MODIS imagery, including cloud cover, large sensor view zenith an-
gles (>30°), and the proportion and density of forest cover (Dozier
et al., 2008; Hall et al., 1998; Nolin, 2010). Forest cover is defined
here as the fraction of the land surface obscured by tree canopy
when viewed at nadir. Optical remote sensing is less accurate in
forests as trees cast shadows (Kane et al., 2008; Vikhamar &
Solberg, 2003), and the canopy conceals the surface where snow
may exist (Liu et al., 2004, 2008). Except in cases of abrupt distur-
bances (e.g., fire, wind storms, beetle outbreak, or timber harvest),
coniferous forests change over annual to decadal time scales, and
thus the canopy is the most persistent obstacle to remote sensing of
snow in forested, temperate areas. Forests are extensive, covering
40% of the North American snow zone (Klein et al., 1998), and as
much as 50% of the Sierra Nevada snow zone (Richards, 1959).
Quantifying MODIS errors in forests is critical for applications that
rely on remotely sensed snow cover and snow disappearance timing
(Raleigh & Lundquist, 2012).
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Canopy or vegetation adjustments are typically made to binary
snow presence and fractional snow-covered area (fSCA) MODIS prod-
ucts in forested areas. Klein et al. (1998) found that the normalized dif-
ference vegetation index (NDVI) improved mapping of MODIS binary
snow cover with the normalized difference snow index (NDSI) in
forested areas. For fSCA retrievals, sub-canopy snow cover has been as-
sumed equivalent to snow cover in the viewable gap (Liu et al., 2004),
which adjusts (i.e., increases) the pixel fSCA (Durand et al., 2008;
Molotch & Margulis, 2008; Rittger et al., 2011). The accuracy of canopy
adjustment methods for MODIS fSCA is of prime interest, as viewable
(i.e., canopy-free) fSCA mapping with the physically-based MODIS
Snow-Covered Area and Grain size algorithm (MODSCAG, Painter et
al., 2009) has higher accuracy than NDSI-based empirical methods
when using Landsat Enhanced Thematic Mapper Plus (ETM+) as vali-
dation (Rittger et al., 2012).

While prior studies have acknowledged the limitations of remote
sensing of snow in forested regions (Hall et al., 1998, 2001, 2000;
Klein et al., 1998; Liang et al., 2008; Liu et al., 2004; Nolin, 2010;
Simic et al., 2004; Vikhamar & Solberg, 2003), a few studies have
quantified the impact of increasing forest cover on MODIS snow
mapping accuracy and the effectiveness of fSCA canopy adjustments.
Comparisons with Landsat TM in Alaska have indicated that the
original MODIS binary snow mapping algorithm (Hall et al., 1995)
has 96% accuracy in areas with b50% forest cover and 71% accuracy
in areas with >50% forest cover (Hall et al., 1998). However, MODIS
errors in forests cannot be reliably assessed with higher resolution
sensors such as Landsat, because the Landsat sensor's line-of-sight is
also obstructed by forest canopy and is susceptible to snow mapping
errors from forest self-shadowing effects (Kane et al., 2008). Satellite
intercomparison studies can yield uncertain conclusions because the
highest resolution sensor is assumed to be the most accurate (Hall
et al., 2000), even though all passive instruments have common lim-
itations (e.g., forest canopy). Therefore, ground-based observations
provide an independent and robust approach to validate MODIS and
quantify snow cover mapping errors in forested areas.

Most MODIS ground-based validation studies have used daily
snow observation networks (e.g., SNOTEL stations in the United
States) that span regional and continental scales (Brubaker et al.,
2005; Dong & Peters-Lidard, 2010; Klein & Barnett, 2003; Maurer et
al., 2003; Parajka & Blöschl, 2008; Pu et al., 2007; Simic et al., 2004;
Tekeli et al., 2005; Zhou et al., 2005). These networks provide insuffi-
cient information about the accuracy of MODIS or canopy adjustment
methods in forested areas because measurement stations are typical-
ly located in clearings, which exhibit different snow accumulation
and melt dynamics relative to forests (Varhola et al., 2010a). Addi-
tionally, the spatial density of observational networks is relatively
sparse, with an average of 1 station per 100 km2 in the most dense
network (Parajka & Blöschl, 2008). MODIS pixels rarely encompass
more than one ground-based snow sensor.

Intensive field surveys yield more dense spatial information to
evaluate snow mapping in forests and the effectiveness of canopy
correction methods. For example, the NASA Cold Land Processes
Field Experiment (CLPX) (Cline et al., 2003) measured snow proper-
ties in subalpine forests and alpine areas in Colorado that have
allowed evaluations of microwave remote sensing and examination
of MODIS view angle effects in forests (Liu et al., 2008; Xin et al.,
2012). CLPX teams sampled snow depth at 500 locations in nine
1 km2 intensive study areas during 7 to 9 day periods near peak
snow accumulation (late February and late March) in 2002 and
2003 (Elder et al., 2009). While the CLPX density (500 measurements
per 1 km2) is ideal, the timing of the observation periods (near peak
accumulation) limits our understanding of potential snow cover
mapping errors in the forest. The largest errors in remotely sensed
snow cover are likely to occur late in the melt season when snow
may persist longer in clearings (e.g., Storck et al., 2002) or in forests
(e.g., Pomeroy & Granger, 1997). Field crews are rarely able to
measure snow disappearance timing (Jost et al., 2007) because it
requires frequent (e.g., daily) surveys through the melt season.

Shallowly-buried temperature sensors provide a robust, ground-
based approach to monitor snow presence under the forest canopy
and in clearings through an entire snow season (Lundquist & Lott,
2008). In temperate regions, diurnal fluctuations in near-surface soil
temperatures are significantly reduced or absent when snow is present
(Lundquist & Lott, 2008; Tyler et al., 2008), allowing inference of snow
presence during damped temperature cycles at each sensor. By using a
network of such sensors, fSCA can be inferred and used to test
MODIS-derived fSCA and canopy adjustment methods in ways that
higher spatial resolution imagery (e.g., Landsat) or typical ground-
based monitoring stations (e.g., SNOTEL) cannot.

The purpose of this study is (1) to test the seasonal accuracy of fSCA
from canopy-adjusted MODSCAG through comparison with dense net-
works of daily ground-based observations at four sites in the California
Sierra Nevada with varying forest cover, and (2) to validate the
ground-basedmethodology.We validated our ground-based fSCA during
one snowmelt season at ameadow site using observations of daily snow
depletion from time-lapse photography and high resolution (15 m)
snow maps from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) (Yamaguchi et al., 1998).

2. Study sites and years

We selected four study sites (0.25 km2 to 1.0 km2) in the California
Sierra Nevada (Fig. 1a, Table 1) across a range of forest cover. These
included subalpine meadow sites at Tuolumne Meadows (TUM) and
Dana Meadows (DAN), and forest sites at the Onion Creek Experimen-
tal Forest (ONN) and the Yosemite Forest Dynamics Plot (YFDP). All
four sites have a Mediterranean climate, with the majority of annual
precipitation falling between October and May, typically as snowfall
(Baker, 1944; Serreze et al., 1999).

TUM and DAN are located in the headwaters of the Tuolumne
River Basin in Yosemite National Park. TUM is located in a west-
draining valley. A forested north-facing slope is found to the south,
while a mixture of forest and rock outcroppings along a south-
facing slope is found to the north. DAN is located 3 km west of
Mt. Dana (3981 m) in a south-draining valley. Both meadow sites
are flat, with mean slopes of 1° in TUM and 5° in DAN. Lodgepole
pine (Pinus contorta) is the dominant tree species in these areas.
Mean forest cover in the area surrounding each site is 23% at TUM
and 32% at DAN (Table 1). The California Department of Water
Resources (CDWR) measures SWE with snow pillows near each of
these sites. SWE data were available at both sites through most of
the study period, except after mid-February 2011 at TUM.

ONN is situated southwest of Donner Summit in the headwaters
of the North Fork of the American River Basin. The study area spans
125 m of relief. Slopes are primarily southwest facing and measure
15° on average. The forest cover at ONN averages 65% and is
primarily mixed-conifer forest, with communities of red fir (Abies
magnifica), white fir (Abies concolor), Jeffrey pine (Pinus jeffreyi),
and incense-cedar (Calocedrus decurrens), with discontinuous
forest cover in montane chaparral and meadow. A prominent
thicket of chaparral is found along the northwestern edge of the
ONN study site, while a 0.2 km2 dry meadow is located to the
south. In this meadow, the National Oceanic and Atmospheric Ad-
ministration (NOAA), through their Hydrometeorological Testbed
(HMT, Ralph et al., 2005), maintains a meteorological station that
monitors snow depth. This station provided reliable data until
March 2011, when heavy snow accumulations buried and damaged
the mast arms of the tower.

YFDP (http://www.yfdp.org) is located in the Tuolumne River Basin
near Crane Flat in Yosemite National Park (Lutz et al., 2012). The site is
predominantly north facing, with 18° mean slopes, and a 115 m eleva-
tion span. An old-growth forest comprised primarily of sugar pine

http://www.yfdp.org


Fig. 1. (a) Locations of TuolumneMeadows (TUM), DanaMeadows (DAN), Onion Creek Experimental Forest (ONN), and Yosemite Forest Dynamics Plot (YFDP) in the Sierra Nevada, and
snow course snow water equivalent (SWE) at or near the four study sites during water years (b) 2010 and (c) 2011. Snow courses are from the California Cooperative Snow Survey
network, taken routinely every year on or near 1 April and 1 May. YFDP is represented by the Gin Flat snow course, 4 km east of YFDP and 300 m higher in elevation. Also shown
are the long-term (LT) means at each snow course on 1 April (n=65 years) and 1 May SWE (n=30 years); only years with snow at all four snow courses were used to calculate
the LT mean. An additional snow survey on 17 April 2011 was conducted at ONN to document the difference in SWE accumulation between a clearing and the adjoining forest.
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(Pinus lambertiana) and white fir (A. concolor) characterizes the site. Of
the four study sites, YFDP has not only the highest mean forest cover
(79%), but also the lowest mean elevation (1860 m).

The study spanned water years (i.e., 1 Oct–30 Sept) 2010 and
2011, which exhibited contrasting snow conditions according to
monthly snow course measurements from the California Cooperative
Snow Surveys (CCSS). During water year (WY) 2010, near average or
above average snow conditions were found on 1 April, and above av-
erage conditions were found on 1 May due to additional snow storms
and/or low melt rates throughout April (Fig. 1b). Water year 2011
featured anomalously high snow accumulations on both 1 April and
1 May (Fig. 1c). The CCSS surveys are made in clearings, where winter
snow accumulations tend to be greater than under forest canopies. To
measure the magnitude of this difference at ONN, we conducted a
snow survey on 17 April 2011 at 47 points in the meadow and 51
points in the adjoining forest. Meadow SWE averaged 470 mm higher
than forest SWE (Fig. 1c). The CCSS 1 April snow course measure-
ments in ONN matched our 17 April meadow survey.

3. Methods

3.1. Ground-based fSCA

In temperate snow zones such as the subalpine regions of the
Sierra Nevada, diurnal fluctuations in sub-surface ground tempera-
ture (Tg) are damped or absent when snow is present because the
Table 1
Characteristics of the four Sierra Nevada study sites, ordered by increasing forest cover.

Tuolumne Meadows
(TUM)

Dana
(DAN

Mean forest coverA, fcan 0.23 0.32
Latitude (N) 37° 52′ 30″ 37° 5
Longitude (W) 119° 21′ 49″ 119°
River basin Tuolumne Tuol
Mean elevation (m) 2615 2985
Mean DJF air temperatureB (°C) −3.6 −4.1
Mean annual precipitationB (mm) 830 970
WY 2010 ground sensors 45 45
WY 2011 ground sensors 47 52

A Average fractional forest cover of the 1500 m×1500 m area encompassing each study s
et al., 2004).

B Based on PRISM 1971–2000 monthly climate normals product at 800 m resolution (Da
low thermal conductivity of snow causes it to insulate the ground
(Lundquist & Lott, 2008; Tyler et al., 2008). Thus, by measuring hourly
Tg with shallowly-buried temperature sensors, daily snow presence
can be inferred during periods with a reduced diurnal cycle in Tg
(Fig. 2). Maxim (San Jose, California) Thermochron iButtons (model
DS1922L) and Onset (Cape Cod, Massachusetts) HOBO Pendant
data-loggers were deployed at TUM, DAN, and ONN to measure Tg
every hour from August 2009 through July 2010, and from September
2010 through August 2011. Sensors measured hourly Tg at YFDP from
November 2010 to July 2011. 92% of all sensors deployed in the study
were iButtons, while the remaining 8% were HOBO Pendants. Sensors
were buried 2 cm to 10 cm under the surface (Fig. 2a), following the
methods of Lundquist and Lott (2008).

A network of temperature sensors sampled Tg across each study
site at regular spatial intervals (Fig. 3). During WY 2010, paired sen-
sors were located within 5 m to 10 m of each other, and all sets of
paired sensors were located 100 m apart from each other on a
quasi-regular grid (Fig. 3a, c, e). During WY 2011, the networks at
TUM, DAN, and ONN were expanded to cover a larger area (Fig. 3b,
d, f). Sensors were no longer paired at each location and were spaced
every 100 m at TUM and ONN and every 100 m to 200 m at DAN.
Sensors at YFDP (Fig. 3g) were only deployed in WY 2011, and were
spaced every 40 m along two parallel transects. Sensors at TUM,
DAN, and ONN were geolocated with a handheld GPS unit while
sensors at YFDP were installed at study points that were surveyed
with a total station.
Meadows
)

Onion Creek
(ONN)

Yosemite Forest Dynamics Plot
(YFDP)

0.65 0.79
3′ 58″ 39° 16′ 40″ 37° 45′ 59″
15′ 20″ 120° 21′ 18″ 119° 49′ 9″
umne American Tuolumne

1950 1860
−0.9 2.2
1700 1060
89 –

75 37

ite, based on the 30 m 2001 National Land Cover Dataset forest canopy product (Homer

ly et al., 2008, 1994).



Fig. 2. Ground-based method of determining snow presence at a point with a
self-logging temperature sensor. Temperature sensors were (a) buried at a depth of
2 cm to 10 cm and recorded (b) hourly ground temperature (Tg) through the study
year. (c) Diurnal temperature ranges were inspected and periods with diurnal temper-
atures below 1.0 °C were (d) classified as snow-covered periods at that sensor.
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After retrieving the sensors, all hourly Tg time series (Fig. 2b) were
converted to daily time series of binary snow presence (i.e., 0 =
snow-free, 1 = snow) with the following simple algorithm. To iden-
tify snow presence above a sensor, the algorithm required that the di-
urnal range in Tg did not exceed 1.0 °C over a period of 48 h (Fig. 2c).
The resulting daily snow presence time series (Fig. 2d) were visually
checked against the original hourly Tg. Additional quality control was
conducted by comparing the timing of snowfall events (as observed
at nearby snow pillows or as calculated based on air temperature
and precipitation) to the snow time series at the study sites. This
eliminated spurious snow detection during cold, snow-free periods
in the autumn with low diurnal temperature variations. Averaged
across the sites, spurious increases in fSCA occurred on 10 days during
WY 2010 and 3 days during WY 2011. When spurious snow presence
was detected, we reclassified the affected sensors as snow-free.

To derive daily fSCA time series at each site (hereafter called
“ground fSCA”), the number of sensors reporting snow presence each
day was summed and divided by the total number of sensors at that
site (Table 1). We checked the confidence of ground fSCA through a
Monte-Carlo type test at each site, where 10 sensors were randomly
sampled to produce a unique fSCA time series. This was repeated 100
times and the standard deviation of the 100 fSCA time series was
computed during each day of the ablation season. Averaged across
the ablation season, the standard deviation of ground fSCA ranged
from 0.045 to 0.092, suggesting that the ground networks adequately
sampled the snow cover dynamics of each study area.

3.2. Validation of ground fSCA

To test ground fSCA, we used two independent observations of snow
cover depletion at TUM during the spring and summer of 2010. These
included a time-lapse camera, which was used to check the timing
and rate of snow cover depletion, and three high-resolution (15 m)
images from ASTER in a canopy-free area, which were used to further
assess fSCA accuracy.

3.2.1. Time-lapse analysis
An east-facing time-lapse camera took a photograph of Tuolumne

Meadows every four hours in May and June 2010 and recorded the
depletion of snowpack from full cover to snow-free conditions. The
camera was located approximately 2 km west of the TUM ground
sensors and focused on the western area of the meadow, which we
assumed had similar snow depletion timing and rates to the meadow
as a whole. The camera, a Sony Cybershot (model DSC-W55) with 7.2
megapixel resolution, was placed in a protective casing and fixed to a
tree for stability.

Numerous studies have employed time-lapse photography to assess
patterns of snow presence, to quantify spatial and temporal compo-
nents of snow cover depletion at small scales, and to measure snow
depth (see Parajka et al., 2012 for a review). We employed a novel ap-
proach for detecting the temporal depletion of snow by mapping snow
cover in each scene based on pixel brightness and then using singular
value decomposition (SVD) (see Wall et al., 2003) to extract the tem-
poral depletion information. SVD is the basis for Principal Component
Analysis (PCA), which is essentially equivalent to Empirical Orthogonal
Function (EOF) analysis. SVD reduces a complex system into its princi-
pal modes of variability; in other words, it finds the signals that explain
the most variance of the data set in space and time.

Daily images (e.g., Fig. 4a–c) taken between 10 AM and 2 PM PST
were retained to coincide with the overpass of Terra (10:30 AM equa-
torial crossing), to minimize shadows in the image, and to ensure rela-
tively consistent lighting from day-to-day. Cloudy images were
removed because they introduced noise in the analysis by reducing
the lighting in each scene. We converted each image from RGB to the
0 to 255 range (0 = black and 255 = white) in order to map snow
cover based on grayscale brightness. We confined the analysis to an
area in the western extent of the meadow (i.e., closer to the camera)
to reduce distortion of pixels, as pixels farther from the camera
encompassed more land surface area than pixels closer to the camera.

A snowmapping algorithmwas used and demonstrated to be con-
sistent with visually identified snow cover in each original RGB
image. To map snow in each grayscale image, we constructed a histo-
gram and classified snow-covered pixels by finding pixel brightness
values greater than 155 (~60% brightness), which corresponds to
the lower limit of snow albedo at visible wavelengths for shallow
snowwith a large grain radius (Wiscombe &Warren, 1980). The algo-
rithm translated each grayscale image into a binary snow map. The
binary snow map of each image was reordered into a column vector,
and a matrix (M) was constructed from all vectors, such that rows
corresponded to spatial position and columns corresponded to time.

SVD was then used to derive the temporal component of snow
depletion. M was input into the SVD.m routine in MATLAB (Version
7.9), which output the spatial and temporal modes, ordered by the
proportion of variance explained. The first mode explained 34% of
the variance in the time-lapse sequence, and the non-zero spatial
weights indicated that this mode represented snow cover (Fig. 4d).
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Fig. 3. Locations of ground temperature sensors at the study sites during water years 2010 and 2011. Shown in order of increasing forest cover are (a–b) Tuolumne Meadows,
(c–d) Dana Meadows, (e–f) Onion Creek, and (g) the Yosemite Forest Dynamics Plot. Most locations during WY 2010 (a, c, e) have two temperature sensors in close proximity
(b10 m) but appear as a single dot. Contour interval is 5 m in (a) and (b), and 10 m in all other subplots.
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Thus, the first temporal mode (Fig. 4e) described how snow cover de-
pleted through time. To infer a time series of fSCA, the absolute value
of the first temporal mode was scaled to the 0 to 1 range, hereafter
called “time-lapse fSCA” (Fig. 4e).

3.2.2. ASTER
Cloud-free ASTER images of TUM were obtained on 25 April, 5

June, and 30 July in 2010 to derive high resolution snow maps.
ASTER visible and near infrared (VNIR) bands in the green–yellow
(0.520–0.600 μm), red (0.630–0.690 μm), and near-infrared (0.780–
0.860 μm) wavelengths were acquired. Supervised mapping of snow
cover was implemented based on the methods of Vogel (2002),
which were developed for the 15 m panchromatic band (0.52–
0.92 μm) of Landsat 7 and found to have comparable performance
to the NDSI approach. The raw digital numbers of each ASTER channel
were first converted to radiance and reflectance based on NASA

image of Fig.�3


Fig. 4. Tuolumne Meadows time-lapse photo analysis with singular value decomposition (SVD) during May–June 2010. Shown are sample RGB photographs taken to show progres-
sion of snow cover from (a) 31 May to (b) 5 June to (c) 15 June. Also shown are the (d) spatial and (e) temporal weights of the 1st SVD mode, which is interpreted as snow cover
depletion. A fractional snow-covered area (fSCA) time series was inferred from the temporal weights of the 1st SVD mode.
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(2001). The VNIR reflectance values in each pixel were then averaged
into a single panchromatic value. Pixels with panchromatic
reflectance>40% were mapped as snow, consistent with the NDSI
threshold (Dozier, 1984). This threshold provided the best visual
match to false-color images of snow cover (Fig. 5). ASTER fSCA was
acquired in a 465 m square box coincident with the study area, and
sized to exclude adjoining forested areas.

The number of snow-covered ASTER pixels divided by the total
number of ASTER pixels (961) in the area (red box, Fig. 5b) was
taken as ASTER fSCA. We carefully considered the accuracy of this
approach, as fine resolution maps of binary snow cover may have
bias when aggregated to a coarse fSCA value (Rittger et al., 2012). As
noted by Rittger et al. (2012), binary methods may underestimate
snow cover at low fractions and overestimate snow cover at higher
fractions. However, we did not find evidence that a major bias in
ASTER fSCA existed at TUM in 2010.

3.3. MODIS Snow-Covered Area and Grain Size (MODSCAG)

The physically-based MODSCAG algorithm uses spectral mixture
analysis on a pixel-by-pixel basis to derive gridded 500 m daily fSCA.
Spectral mixture analysis finds the best linear combination of land
surface endmembers (e.g., snow, soil, rock, vegetation, lake ice) that
matches MODIS surface reflectance from the Terra MOD09GA product
(Painter et al., 2009):

RS;λ ¼ ∑
i
f iRλ;i þ ελ ð1Þ
where RS,λ is the pixel-averaged surface reflectance from MOD09GA
at wavelength λ, fi is the fraction of endmember i in the pixel, Rλ,i is
the surface reflectance for endmember i at wavelength λ, and ελ is
the residual error for all endmembers. Wavelength-dependent
surface reflectance of non-snow endmembers (e.g., vegetation, soil)
is acquired from a library of observations acquired in the field or in
a laboratory. Snow reflectance is estimated using a hemispherical di-
rectional reflectance factor and a discrete-ordinates radiative transfer
model. Using the approach in Eq. (1), MODSCAG examines permuta-
tions of two or more endmembers and selects the model with the
smallest error (relative to MOD09GA reflectance) and the fewest
endmembers. If this combination of endmembers includes snow,
then the daily fSCA is computed as the fraction of the snow
endmember, normalized by the fraction of photometric shade
(e.g., due to terrain or vegetation shading) in the pixel. The lower
detection limit is fSCA=0.15 (Painter et al., 2009). For a complete de-
scription of the MODSCAG algorithm, the interested reader is directed
to the model development paper of Painter et al. (2009). MODSCAG
snow cover data are available through the NASA JPL Snow Data
System Portal (http://snow.jpl.nasa.gov/).

After implementation of MODSCAG at all pixels and all daily
scenes, cloudy and noisy pixels are filtered, producing gaps. Noisy
pixels usually occur when one or more spectral bands have high
frequency dropouts to zero reflectance, which cannot be used to
estimate the snow cover properties of a pixel (Dozier et al., 2008).
Therefore, noisy pixels require removal and estimation through inter-
polation. MODSCAG scenes were interpolated in time using a 16-day
smoothing spline on a pixel-by-pixel basis following Dozier et al.

http://snow.jpl.nasa.gov/
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Fig. 5. (a) ASTER nadir false color image (RGB 321) of Tuolumne Meadows on 5 June 2010, showing snow cover and melt water channels draining to the Tuolumne River. The ap-
proximate location and view direction of the time-lapse camera (Fig. 4) are indicated. ASTER VNIR resolution is 15 m. (b) Mapped snow cover from the ASTER image on 5 June 2010
(white = snow cover, black = snow-free or unknown). The red box corresponds to the approximate location of the ground temperature sensors from Fig. 3a. Fractional snow cover
in the red box was 0.66 on this date.
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(2008) and Dozier and Frew (2009). The implemented spline
(csaps.m in MATLAB) was a weighted combination of a least-
squares fit and a cubic spline. The best fit changed depending on the
temporal spacing between available data, and therefore varied spa-
tially as a result of non-uniformities in cloud cover and noisy data. Es-
timates from the spline were additionally weighted according to the
cosine of the sensor view zenith angle and the view-angle-
dependent pixel area, such that near-nadir views had the greatest
weights.

Filtering and smoothing of theMODSCAG scenes produced a tempo-
rally continuous product of gridded daily fSCA across the Sierra
Nevada. Because the geolocation accuracy of MODIS (±1.5 pixels) and
the gridding proceduremay introduce artifacts into a pixel-scale valida-
tion (Tan et al., 2006), we aggregated (i.e., averaged) theMODSCAG fSCA
in a 3×3 (i.e., 1500 m×1500 m) pixel window encompassing each site
to ensure collocationwith the area sampled by the ground-based obser-
vations (Xin et al., 2012).

3.4. MODSCAG canopy adjustments

MODSCAG fSCA is created based on the land surface that is viewable
by MODIS, which underestimates snow cover in forests due to effects
such as canopy obstruction (Rittger et al., 2012). In forested areas,
only the land surface in forest clearings, canopy gaps, and between can-
opy gaps is visible (Liu et al., 2008). These viewable areas provide the
basis for estimating fSCA with MODSCAG, which currently lacks a native
canopy adjustment. We adjusted the MODSCAG fSCA time series by the
viewable gap fraction (VGF), which can be provided by a geometric
optical model (Liu et al., 2004) or a satellite-derived product (Durand
et al., 2008; Molotch & Margulis, 2008; Rittger et al., 2012):

f SCA;adjusted ¼ f SCA;obs
1−f can

ð2Þ

where fSCA,adjusted is the MODSCAG fSCA adjusted for forest canopy, fSCA,obs
is the fSCA from the gridded daily 500 m MODSCAG product, 1− fcan is
the viewable gap fraction, and fcan is the fractional forest cover of each
grid cell. This adjustment increases fSCA in areas with trees to account
for the area hidden by the canopy and the greatest fSCA adjustments
occur in more dense forests. fSCA,adjusted is constrained to the [0, 1]
interval. This canopy-adjusted MODSCAG fSCA is hereafter referred to
as “MODSCAG fSCA”.

For the value of fcan (Eq. 2) at each site, we used the static
(i.e., temporally constant) percent tree canopy from the 2001 Nation-
al Land Cover Dataset (NLCD), which is derived from Landsat 5 and
Landsat 7 data at 30 m resolution (Homer et al., 2004; USGS, 2011).
This dataset is freely available and commonly used in snow research
(e.g., Durand et al., 2008; Young et al., 2009). Changes in land cover
at the sites were insignificant between 2001 and 2011.

There are several well-known limitations inherent in this canopy
adjustment (Rittger et al., 2012). First, this correction assumes fSCA
under the forest canopy is equivalent to fSCA in the viewable areas
(e.g., meadows, clearings) (Durand et al., 2008). However, snow stud-
ies across different climate zones show accumulation and melt rates
change based on forest cover and type of tree (see Varhola et al.,
2010a). Viewable snow in a clearing is not likely to represent snow
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under the canopy, especially late in the melt season. Second, the sim-
plifying assumption of constant fcan for MODIS may not be robust in
areas with trees, as a greater area of each tree (e.g., leaves, branches,
trunks) will be included as the view angle increases (Hall et al., 1998;
Liu et al., 2008). While the smoothing algorithmweights fSCA,obs based
on view angle and pixel area (see Section 3.3), a weighting scheme is
ineffective for static values of fcan, and therefore the static approach
may not be fully sufficient. Third, a static adjustment is not robust
when forest canopies are loaded with snow, as immediately following
a precipitation event.

3.5. Evaluation metrics

We adopted the same binary and fractional metrics for evaluation
as prior MODSCAG studies (Painter et al., 2009; Rittger et al., 2012)
and other MODIS snow cover studies (e.g., Dong & Peters-Lidard,
2010). The binary metrics are first-order performance metrics that re-
veal the accuracy of MODSCAG in determining whether or not snow is
present, regardless of the fractional value. Fractional metrics are used
to assess actual fSCA errors. MODSCAG fSCA values below the
MODSCAG detection limit (0.15) were set to 0 before calculating the
binary and fractional metrics. Ground fSCA values below 0.15 were
not changed in this manner, as this indicated the existence of patchy
snow.

3.5.1. Binary metrics
During each day of the snow season at each study site, MODSCAG

fSCA was evaluated based on the agreement or disagreement of snow
presence with the ground fSCA. Days when snow was present
(i.e., fSCA≥0.15 for MODSCAG, fSCA≥0 for ground) in both ground
fSCA and MODSCAG fSCA were classified as a true positive (TP), while
days when both reported snow-free conditions (i.e., fSCAb0.15 for
MODSCAG, fSCA=0 for ground) were classified as a true negative
(TN). A false positive (FP) indicated that MODSCAG identified snow
cover not observed by the ground network (i.e., commission), and a
false negative (FN) signified that MODSCAG missed snow cover that
the ground network observed (i.e., omission). These daily values
were input into three binary metrics to determine performance
across the snow season:

Precision ¼ TP
TP þ FP

ð3Þ

Recall ¼ TP
TP þ FN

ð4Þ

F ¼ 2TP
2TP þ FP þ FN

: ð5Þ

Precision tests for commission errors, Recall tests for omission
errors, and the F score tests for both errors. All three binary metrics
vary from 0 to 1, with 1 indicating perfect performance.

3.5.2. Fractional metrics
Direct comparisons of MODSCAG fSCA and ground fSCA were

achieved through the use of mean bias (i.e., mean difference), median
bias, and root mean squared error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑
N

f SCAMODSCAG−f SCAground

� �2
s

ð6Þ

where N is the number of snow-covered days, as observed at
each ground network. Bias was taken as the difference between
MODSCAG fSCA and ground fSCA, such that a positive (negative) bias
indicated MODSCAG overestimated (underestimated) fSCA.
4. Results

4.1. Validation of ground fSCA at Tuolumne Meadows

Comparisons of ground fSCA against time-lapse fSCA and ASTER fSCA
in 2010 indicated that the ground fSCA methodology was accurate.
Time-lapse fSCA and ground fSCA matched each other in characterizing
the timing and rate of snow cover depletion from late May to early
June 2010 (Fig. 6a). Both ground fSCA and time-lapse fSCA indicated
that the majority of snow cover depletion occurred over a ten day
period (29 May to 8 June). During this critical melt period, ground
fSCA had high correlation (R2=0.98) with time-lapse fSCA.

Ground fSCA tracked ASTER fSCA across the three available ASTER
images (Fig. 6a). Ground fSCA on 25 April 2010 (full snow cover)
and 30 July 2010 (no snow cover) matched ASTER fSCA. A comparison
on 5 June 2010 supported the accuracy of ground fSCA during the
critical melt out period, as ground fSCA was 0.62 and ASTER fSCA was
0.66 (Fig. 5b). ASTER was valuable in that it provided additional fSCA
information in early June 2010, when MODSCAG snow cover
disappeared abruptly (see Section 4.2.1).

4.2. Time series comparisons

4.2.1. Tuolumne Meadows (TUM)
Across the 2010 and 2011 snow seasons, MODSCAG had high

Precision and F score values at TUM (Table 2). MODSCAG performance
was better in 2011 than 2010 because omission errors (Recall) were
present during the 2010 melt season, likely from cloud cover and
view angle issues (described below). Omission errors also arose
when MODSCAG either missed early season storms or the smoothing
algorithm removed snow storms in October 2010 and 2011 (Fig. 6).

The canopy adjustment reduced MODSCAG fSCA bias at TUM by
13% to 15% during the two years (Fig. 6), but canopy-adjusted
MODSCAG still had a consistent negative bias at TUM during both
years (Table 3). During the winter months, MODSCAG fSCA oscillated
between 0.60 and 0.95 in a pattern possibly introduced by the
smoothing method (Section 3.3); these multi-day fSCA oscillations
during the winter were a common feature of MODSCAG fSCA at all
four sites. At TUM, these oscillations did not consistently coincide
with snowfall events, and therefore did not occur due to increased
reflection from canopy interception.

A notableMODSCAG fSCA error at TUMoccurred in spring 2010when
MODSCAG fSCA depleted rapidly and fell below the 0.15 threshold on 1
June, 7 days before the ground fSCA and 8 days before the time-lapse
fSCA fell below 0.15 (Fig. 6a). An examination of atmospheric transmis-
sivity (calculated from insolation observations) and MODIS visible
imagery indicated that cloudy conditions persisted on 1 June, 3 June,
and 4 June (Fig. 7a). Additionally, the Terra satellite was off-nadir
(i.e., >30°) on 31 May (31°), 2 June (43°) and 6 June (49°). The limited
availability of near-nadir view angles on clear days within the short
snow cover depletion period (29 May–8 June) likely caused MODSCAG
fSCA to decline rapidly on 1 June. Interestingly, SWE at the TUM snow
pillow disappeared on 3 June 2010, two days after MODSCAG fSCA fell
below 0.15 (Fig. 6a).

4.2.2. Dana Meadows (DAN)
MODSCAG had the fewest omission errors at DAN, as noted by the

high Recall values. MODSCAG Precision (Table 2) was also high at
DAN, and the main commission errors occurred in early October
2009 and 2010, and briefly in mid-October 2010 (Fig. 8).

The canopy adjustment reduced MODSCAG fSCA bias by 22% to 23%
during the two years (Fig. 8), but canopy-adjusted MODSCAG fSCA still
had an overall negative bias at DAN (Table 3). In both years,
MODSCAG overestimated fSCA during the early accumulation season
(e.g., October) but underestimated fSCA through the period of full
snow cover (e.g., December through early June), with values typically



Fig. 6. Fractional snow-covered area (fSCA) at Tuolumne Meadows (TUM) during water years (a) 2010 and (b) 2011. Shown in both years are fSCA from the ground temperature
network, and MODSCAG fSCA before and after the canopy adjustment. In May–June 2010, independent fSCA data from a time-lapse camera and ASTER were included for validation.
Also shown are periods when the TUM snow pillow reported snow presence (SWE>1 cm) and when SWE data were missing.
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fluctuating between 0.75 and 0.96. During the 2010 ablation season,
MODSCAG fSCA reasonably matched ground fSCA (Fig. 8a). During the
2011 ablation season, MODSCAG had a notable fSCA overestimation
error from 28 June to 30 June (Figs. 7b, 8b), possibly introduced by
cloud cover and off-nadir view angles. After this period, MODSCAG
fSCA reasonably tracked the ground fSCA for the rest of the 2011
ablation season. Complete depletion of MODSCAG fSCA (i.e., fSCAb0.15)
was only 1 to 2 days earlier than ground fSCA depletion during the two
years. During 2010, snow disappeared at the DAN snow pillow on 24
June, which was 1 day prior to MODSCAG and 2 days prior to the
ground temperature network. In 2011, snow disappeared at the DAN
snow pillow on 1 July, 7 days prior to MODSCAG and 9 days prior to
the ground network.

4.2.3. Onion Creek Experimental Forest (ONN)
MODSCAG yielded more omission errors at ONN than at DAN, as

suggested by lower Recall (Table 2). Omission errors occurred in
November 2009, October 2010, and during the second half of the
melt season in both water years (Fig. 9). The high Precision indicated
that commission errors were rare at ONN, which increased the F
score.

The canopy adjustment had the greatest bias reduction at ONN,
with bias reduced by 35% to 42% during the two years (Fig. 9).
Table 2
Summary of binary metrics across each snow season at the four study sites.

Metric Water year TUM DAN ONN YFDP

Precision 2010 1.00 0.96 1.00 –

2011 0.99 0.97 0.99 0.96
Mean 1.00 0.96 1.00 0.96

Recall 2010 0.78 0.94 0.80 –

2011 0.91 0.98 0.88 0.61
Mean 0.84 0.96 0.84 0.61

F score 2010 0.87 0.95 0.89 –

2011 0.95 0.97 0.93 0.75
Mean 0.91 0.96 0.91 0.75
However, canopy-adjusted MODSCAG fSCA had a negative bias
through both years at ONN (Table 3). The largest fSCA errors occurred
during the early accumulation and late ablation seasons (Fig. 9).
During the 2010 ablation season, MODSCAG fSCA abruptly depleted
and dropped below the 0.15 detection threshold on 1 June 2010
(Fig. 9a). This date of complete snow depletion at ONN was 2 days
prior to the date of snow disappearance at the NOAA HMT snow
depth sensor, but 11 days prior to the ground temperature sensors.
MODSCAG fSCA depletion was more gradual during the 2011 ablation
season (Fig. 9b), but reported systematically lower fSCA through this
period and reached complete depletion 12 days prior to the ground
sensors. During both ablation seasons, MODSCAG snow cover
disappeared (i.e., fSCAb0.15) once ground fSCA approached the forest
cover fraction (Fig. 7c).

4.2.4. Yosemite Forest Dynamics Plot (YFDP)
MODSCAG had the lowest Recall and F score at the heavily forested

YFDP (Table 2), indicating that snow omission errors were most com-
mon at this site. Omission errors were concentrated in May 2011
when the snow cover was melting (Fig. 10). Sporadic periods with
MODSCAG omission errors were also present during periods of partial
snow cover disappearance in the middle of the snow season
(e.g., early December, early February). Like ONN, commission errors
were rare at the YFDP, as Precision was high.
Table 3
Summary of fractional metrics across each snow season at the four study sites.

Metric Water year TUM DAN ONN YFDP

RMSE 2010 0.28 0.19 0.24 –

2011 0.23 0.19 0.17 0.55
Mean 0.25 0.19 0.21 0.55

Mean bias 2010 −0.24 −0.11 −0.11 –

2011 −0.19 −0.08 −0.07 −0.37
Mean −0.22 −0.09 −0.09 −0.37

Median bias 2010 −0.25 −0.15 −0.03 –

2011 −0.20 −0.12 −0.03 −0.41
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Fig. 7. Ground fractional snow-covered area (fSCA) vs. canopy-adjusted MODSCAG fSCA at (a) Tuolumne Meadows, (b) Dana Meadows, (c) Onion Creek, and (d) the Yosemite Forest
Dynamics Plot from 1 April to melt out during water years 2010 and 2011. Time generally progresses from the upper right corner to the lower left as the snow cover disappears.
Points are classified based on whether cloudy or clear conditions prevailed, based on pyranometer data and MODIS visible imagery. Points during a one week period in WY 2010 at
TUM (a) and during a three day period in WY 2011 at DAN (b) are labeled to indicate a combination of cloudy days and off-nadir view angles (V) that introduced errors in
MODSCAG fSCA. The NLCD forest cover fraction is also plotted, showing that MODSCAG fSCA drops to 0 at the forest sites (c, d) as the ground fSCA approaches the forest fraction.
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While Precision was high at YFDP, errors in fSCA were prevalent
throughout the 2011 snow season (Fig. 10), as MODSCAG fSCA had a
RMSE of 0.55 and a mean bias of −0.37 (Table 3). In other words,
MODSCAG reported that snow cover existed throughout most of the
snow season, but MODSCAG fSCA was generally too low. MODSCAG
fSCA was characterized by multiple cases with rapid increases to full
snow cover and nearly equivalent drops in fSCA within 1 to 2 weeks.
These large fluctuations were not found in the ground fSCA (Fig. 10).

Comparing the MODSCAG fSCA time series to snow accumulation
data at the nearby Gin Flat snow pillow indicated that the
MODSCAG fSCA fluctuations often coincided with new snowfall events
(Fig. 10). This suggested either MODSCAG was viewing intercepted
snow in the forest canopy, or storm clouds were being misclassified
as snow cover, or some combination thereof due to the smoothing al-
gorithm. However, not all fSCA fluctuations coincided with new snow
events at YFDP (e.g., single peak in early November, two peaks in
mid-April).

During the 2011 ablation season, MODSCAG only mapped snow
cover at YFDP when the ground fSCA was greater than the forest
cover fraction (Fig. 7d), as at ONN. A snowfall event in mid-May
2011 brought ground fSCA back to full cover and extended the snow
season by 9 days. MODSCAG missed this snowfall event, as it reached
complete depletion (fSCAb0.15) prior to this storm (26 April) and
remained below the 0.15 threshold through the summer. Ground
fSCA reached 0.15 on 26 May, 30 days after MODSCAG (Fig. 10).

4.3. Seasonality of errors

We found that MODSCAG errors varied relative to forest cover and
time of year. We examined how errors changed across three periods:
the early accumulation season (first day of fSCA≥0.15 through 31
December), the winter (1 January through 31 March), and the
ablation season (1 April to the final day of fSCA≥0.15). At TUM,
DAN, and ONN, MODSCAG errors tended to be the most variable
during the accumulation and ablation seasons (Fig. 11a, c). Errors at
these three sites were generally less variable during the winter
months (Fig. 11b). At YFDP, MODSCAG tended to underestimate
snow cover more severely and more consistently with time
(Figs. 10, 11).

5. Discussion and conclusions

We demonstrated that networks of temperature sensors buried
shallowly in the ground provide reliable values of daily fSCA, which
can be used to test canopy-adjusted MODSCAG fSCA in forest locations
not sampled by traditional methods (e.g. Landsat, SNOTEL sites). At
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Fig. 8. Fractional snow-covered area (fSCA) at Dana Meadows (DAN) from the ground temperature network andMODSCAG during water years (a) 2010 and (b) 2011. MODSCAG fSCA
is shown before and after the canopy adjustment. Also shown are periods when the DAN snow pillow reported snow presence (SWE>1 cm) and when SWE data were missing.
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our Sierra Nevada sites, we found that (1) the static canopy adjust-
ment (Eq. 2) reduced MODSCAG fSCA bias (Figs. 6, 8–10) but a consis-
tent negative bias still remained (Fig. 11 and Table 3), (2) the
accuracy of canopy-adjusted MODSCAG fSCA varied with forest
cover, and (3) MODSCAG errors were usually most variable during
the accumulation and ablation seasons. The results demonstrated
the value of dense ground-based validations of remote sensing and
Fig. 9. Same as Fig. 8, except at the Onion Creek Experimental Forest (ONN), and with per
depth measurements were unavailable after March 2011 when the snow depth sensor arm
underscored the need for improved canopy adjustments for MODIS
fSCA.

Canopy-adjusted MODSCAG fSCA was systematically lower than
ground fSCA during the middle of winter (Fig. 11b). This result was
particularly surprising at the meadow sites (TUM and DAN), as we
expected full snow cover at these flat, lightly forested, high-
elevation locations, which had considerable snow accumulation
iods shown when snow depth (SD) exceeded 2 cm during 2010 and 2011. Most snow
was bent by heavy snow accumulation.
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Fig. 10. Same as Fig. 8, except at the Yosemite Forest Dynamics Plot (YFDP) and during water year 2011 only. SWE values are taken from the Gin Flat snow pillow, 4 km from YFDP
and 300 m higher in elevation. The shaded regions indicate periods when new SWE accumulation exceed 1 cm. Also shown are periods when the Gin Flat snow pillow reported
snow presence (SWE>1 cm). Note that the ground sensors did not begin recording data until 9 November 2010, so the first snow storm reported by MODSCAG was not evaluated.
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during the two study years (Fig. 1). We investigated several possible
reasons for this. First, it was possible that the ground sensor sampling
strategy (Section 3.1) partially caused this difference, as sensors were
not placed at potentially snow-free locations (e.g., rock outcroppings
and open water). However, these features covered a small fraction
(generally b0.05) of the land cover at each site. Second, this differ-
ence may have resulted from a documented underestimation bias in
the NLCD forest cover dataset, which has been reported at 9.7% across
the USA (Greenfield et al., 2009) and 23.4% in the Sierra Nevada zone
(Nowak & Greenfield, 2010). However, by checking the NLCD forest
cover against lidar-derived forest cover at TUM and YFDP, we found
that the difference between NLCD forest cover and lidar forest cover
was generally less than 5% at our sites. The mean fSCA bias ranged
from −0.14 to −0.24 during the winter at TUM and DAN
(Fig. 11b), and therefore neither the sampling strategy nor the
possible NLCD bias provides complete explanations for the difference
between MODSCAG fSCA and ground fSCA.

We hypothesize that the use of static forest cover data to adjust for
canopy (Eq. 2) was the primary cause of the MODSCAG fSCA underes-
timation bias during the winter. Because canopy-adjusted MODSCAG
fSCA oscillated to values as high as 0.95 and 0.96 during the winter at
TUM and DAN, respectively, this suggested that the canopy adjust-
ment was effective over specific periods with favorable view angles
and cloud conditions. MODIS band reflectance and viewable gap frac-
tion (i.e., forest cover fraction) both change with view zenith angle,
which changes daily for MODIS (Liu et al., 2008; Xin et al., 2012).
While MODSCAG accounts for the view angle-dependent changes in
surface reflectance, the static canopy adjustment used here did not
account for the variation of viewable gap fraction with view angle.
Therefore, the static adjustment may not be appropriate for adjusting
Fig. 11. Daily errors in canopy-adjusted MODSCAG fSCA during water years 2010 and 2011
(b) winter (Jan–Mar), and (c) the ablation season (Apr–Disappearance). The starting date
last day when fSCA≥0.15. Mean errors are denoted by a circle and whiskers indicate 1 stan
two water years could be shown without overlap at each site. The four sites listed in increa
fSCA from scanning sensors (e.g., MODIS). Concurrent estimates of
fractional vegetation from MODSCAG that account for the changing
view angle, larger pixel size, and different reflectance would likely
provide superior snow maps. More work is needed to determine
whether a view angle dependent forest cover fraction improves
canopy adjustments.

Canopy-adjusted MODSCAG also exhibited a fundamental limita-
tion in that no snow cover was mapped once ground fSCA approached
the forest cover fraction (Fig. 7c, d). This problem cannot be corrected
with the current adjustment method (Eq. 2), as fSCA,obs was 0 in these
cases, inevitably resulting in fSCA,adjusted of 0, regardless of the forest
cover value (fcan). This remains an outstanding challenge for satellite
remote sensing of snow in forested areas.

The prevalence of omission errors (Table 2) at the forest sites
(ONN and YFDP) and the inability of MODSCAG to map snow below
the forest cover fraction (Fig. 7c, d) suggested that snow persisted
longer under the canopy than in the viewable gaps and clearings at
these two sites. Snow lasted 12 to 30 days longer at the ground net-
works of the forest sites (Figs. 9, 10) relative to MODSCAG snow
cover. This difference in snow persistence in forests vs. clearings
was consistent with other studies in the Sierra Nevada. Anderson
(1956) found that snow cover disappeared in a dense forest 16 days
after snow in large forest openings near ONN, while Church (1914)
noted that snow persisted at least 7 to 10 days longer in pine and
fir forests than treeless meadows near Lake Tahoe. These studies
provide confidence in our observations, but we recognize that these
results cannot be generalized for all forests, as forest characteristics
(e.g., canopy structure, species, age) interact with snow in complex
ways, resulting in variability of snow persistence (Kittredge, 1953).
Nevertheless, we note that errors in snow disappearance timing
versus mean NLCD forest cover during (a) the early accumulation season (Start–Dec),
in (a) was the first day with fSCA≥0.15, while the disappearance date in (c) was the
dard deviation from the mean error. The markers were displaced horizontally so the
sing forest cover are TUM, DAN, ONN, and YFDP.
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impact applications such as SWE reconstruction. An error of 12 days
in point snow disappearance has a potential error of 50% in
reconstructed peak SWE, assuming a mean SWE error of 4.3% per
day of snow disappearance date bias (Raleigh & Lundquist, 2012).
Slater et al. (2012) show similar median SWE errors given ±
10 days uncertainty in snow disappearance.

We also note that the operational snow depth and SWE sensors in
clearings at our study areas did not reliably represent snow disappear-
ance timing in the adjacent forests, and these sensors have had wide
usage in prior MODIS validation studies. Taking fSCAb0.15 for snow
absence, the timing of snow disappearance in 2010 from MODSCAG
was within 2 days of observations at the operational snow sensors at
TUM (Fig. 6a) and ONN (Fig. 9a). However, our ground temperature
networks indicated that as much as 60% (ONN) to 84% (TUM) of the
land was still snow-covered once snow disappeared at the operational
sensors in 2010. In these cases, MODSCAG errors in snow disappear-
ance were actually larger than the errors suggested by the operational
data. We also observed cases when the operational snow sensors
overestimated the MODSCAG errors in snow disappearance timing.
For example, the DAN snow pillow data suggested that MODSCAG
had a 7 day error in snow disappearance date in 2011 (Fig. 8b), but
our ground-based sensors showed that MODSCAG only had a 2 day
error. Thus, the issue of snow sensor representativeness (Rice & Bales,
2008) is critically important for comparisons between a MODIS pixel
and a single snow sensor in that pixel. Because most snow pillows
were positioned to provide streamflow indices (Farnes, 1967) and
not to represent the timing and duration of snow presence of an area,
we conclude that a single snow depth or SWE sensor cannot validate
a MODIS pixel with confidence, especially in forested pixels. This has
direct implications for prior studies that have used single snow sensors
to validate MODIS.

While MODSCAG is more accurate than empirical MODIS snow
cover retrievals early in the accumulation season and late in the
ablation season (Rittger et al., 2012), our results show that MODSCAG
errors are often most variable during these periods (Fig. 11a, c). This
implies that intensive field surveys conducted near peak accumulation
(e.g., CLPX) do not sample the largest MODIS snow cover errors in the
seasonal snow zone. As suggested by the results at YFDP, large MODIS
errors are expected to occur frequently in the transient snow zone
where snow may accumulate and disappear multiple times in a single
snow season. These difficulties support the use of distributed
ground-based sensors to test MODIS snow cover, such as networks of
ground temperature sensors (as in this study) or snow depth sensors
(Musselman et al., 2012; Varhola et al., 2010b). Lidar observations of
snow cover (e.g., Deems et al., 2006) may also test MODIS errors in
forests, but the tradeoffs between timing, frequency, and costs of
lidar flights must be considered carefully.

Although our sample size (n=7 site years) is relatively small con-
sidering the large variability in forest cover across the globe, we have
(1) demonstrated a new methodology for ground validation of
MODIS and (2) identified errors in forests that cannot be detected
with previously used validation techniques (e.g., comparisons with
Landsat and SNOTEL). Thus our results provide a first quantification
of forest effects on fSCA errors and highlight the need for continued
testing of MODSCAG and canopy adjustment methods over a more
complete range of forest cover and environmental conditions. This in
turn will benefit users of MODSCAG for distributed applications, such
as SWE reconstruction and snow model testing.
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